Model 3 (Ultrasounds) Homogeneous fast-velocity layer over homogeneous slow-velocity halfspace

Coordinate System

Left handed cartesian coordinate system (see Fig. 1).

All vector components point into the direction of the corresponding coordinate axis. (For example a positive force acts downwards and vertical velocity seismograms are positive for downward movement.)

All coordinates are in meters.

The free surface coincides with the plane z=0.

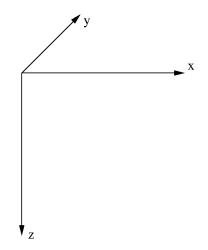


Figure 1: Used coordinate system.

Material Properties

Homogeneous elastic layer (10 mm thick) over homogeneous elastic halfspace. The material parameters are given in Tab. 1.

	v_p in km/s	v_s in km/s	density in gr/cm^3	Q_p	Q_s
layer (10 mm)	4.00	2.31	1.8	inf	inf
halfspace	2.00	1.15	1.8	inf	inf

 Table 1: Material parameters.

Source

Vertical point force with the force time function:

$$s(t) = \begin{cases} 0 & \text{for } t \leq Ts, \\ F_0 \sin^3\left(\frac{\pi(t-Ts)}{Td}\right) & \text{for } Ts < t < Ts + Td, \\ 0 & \text{for } t \geq Ts + Td. \end{cases}$$

with the following parameters used for the modellings: Ts=0.0 ms (time of source onset) Td=0.010 ms (duration of source signal) $F_0=1 \text{ N}$ (scalar force)

The used source time function (without including the factor F_0) and the corresponding amplitude spectrum are plotted in Fig. 2.

The coordinates of the source are: x = 0 mm, y = 0 mm, z = 0 mm.

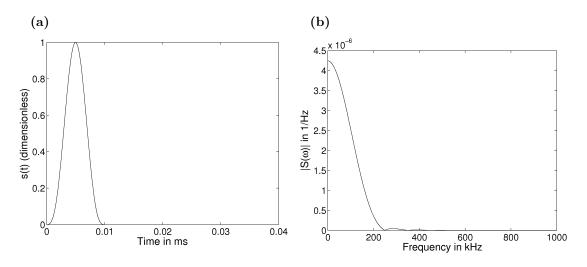


Figure 2: Force time function used for the modellings. In (a) the wavelet is plotted in the time domain and in (b) the corresponding amplitude spectrum is shown.

Receivers

11 equidistant receivers at a distance of 10 mm from each other. The receivers are located at the free surface.

The explicit coordinates are given in Tab. 2.

Time Window

Time window for all receivers is $0 ext{ s to } 0.0004096 ext{ s}$.

Frequency Range

The modellings should be accurate for the whole frequency range given by the source time function.

Output Information

Time histories of particle velocities for x, y and z component (in m/s) for all receivers.

Required time step is 1.0e-7 s.

No.	x in mm	y in mm	z in mm
1	62	0	0
2	72	0	0
3	82	0	0
4	92	0	0
5	102	0	0
6	112	0	0
7	122	0	0
8	132	0	0
9	142	0	0
10	152	0	0
11	162	0	0

Table 2: Receiver of	coordinates.
----------------------	--------------