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1 Introduction
sofi2D is a viscoelastic 2D FD forward modeling code. To include also this code into the
TOAST benchmark test a 2D to 3D transformation suggested by Amundsen & Reitan (1994)
is applied to the modeled data to make them comparable with the results of the 3D forward
modeling codes.
In the following I will just briefly rewrite the relevant equations for this transformation and
make some comments on the numerical implementation of the transformation.

2 2D to 3D transformation
In 2D calculations the model parameters as well as the sources are implicitly assumed to be
extended to infinity in the third dimension. Therefore, 2D sources correspond to line sources in
3D.

In the TOAST benchmark tests the free surface coincides with the plane z=0 and the vertical
source as well as the receivers are located at the free surface. Assuming a line source located
along the y-axis the 2D wavefields for the vertical component z and the horizontal component x
can be expressed by

u2D
z (x,ω) = 2

∫
∞

0
ω cos(ω px) Gz (ω, p) dp (2.1a)

u2D
x (x,ω) = 2

∫
∞

0
ω sin(ω px) Gx (ω, p) dp (2.1b)

with the distance x to the line source, the slowness p, the angular frequency ω and the expansion
coefficients Gz and Gx for the vertical and the horizontal component respectively.

The corresponding back transformation can be written as

Gz (ω, p) =
1
π

∫
∞

0
cos(ω px)u2D

z (x,ω)dx (2.2a)

Gx (ω, p) =
1
π

∫
∞

0
sin(ω px)u2D

x (x,ω)dx (2.2b)

and is used during the transformation to calculate the expansion coefficients Gx and Gz.
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To obtain the 3D wavefields one has to do an expansion with Bessel functions to obtain

u3D
z (r,ω) =

∫
∞

0
ω

2 pJ0 (ω pr)Gz (ω, p)dp (2.3a)

u3D
x (r,ω) =

∫
∞

0
ω

2 pJ1 (ω pr)Gx (ω, p)dp (2.3b)

with J0 and J1 as Bessel functions of the first kind of order zero and one respectively.

For a cylindrical symmetric source (such as a vertical force) and a horizontally layered medium
(1D medium) this transformation is analytically exact. However, in the numerical calculations
the integrals have to be solved numerically and therefore they are approximated by discretiza-
tion.

3 Numerical implementation

In the numerical implementation the integrals in equations (2.2) and (2.3) are solved by the
trapezoidal rule.

3.1 Calculation of the expansion coefficients

3.1.1 Shallow seismic benchmark tests

To reduce spatial aliasing I model a 2D dataset with 436 traces. The minimum offset is 1 m, the
maximum offset is 88 m and an equidistant receiver spacing of 0.2 m is used. These seismo-
grams are used to calculate the expansion coefficients Gz and Gx according to equation (2.2).
For the calculation I apply an offset dependent cosine taper to the far offset traces. 10 % of the
traces (farest away from the source) are affected by this taper.

3.1.2 Ultrasound benchmark tests

For the ultrasound benchmark tests I model a 2D dataset with 203 traces. The minimum offset
is 3 mm, the maximum offset is 205 mm and I use an equidistant receiver spacing of 1 mm.
Again an offset dependent cosine taper is applied to the far offset traces during the calculation
of the expansion coefficients Gz and Gx. This taper affects 10 % of the traces (farest away from
the source).

3.2 Calculation of the 3D seismograms

Equation (2.3) is used to calculate the 3D seismograms. To reduce the influence of the cutoff
phase a slowness taper is applied here. For the shallow seismic benchmark tests the slowness
integral is calculated up to a slowness of 12.0 s/km but from 8.0 s/km on a cosine taper is applied.
For the ultrasound benchmark tests the limits for the slowness integral vary for the different
benchmark tests.
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3.3 Calculation of the seismograms for model 3 for shallow seismics
For the gradient model the seismograms are not decayed completely after 0.7 s. Therefore, I
calculated longer 2D timeseries for the transformation (up to 1.0 s) to avoid artefacts during the
FFTs calculated during the 2D to 3D transformation.
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