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‘ 1. Statement of the problem |

Shallow seismic field data is excited by point sources (e.g. hammer blows).
Full waveform inversion (FWI) approaches which make use of 2D forward
modelling implicitely use a line source to fit the observed data. There-
fore recorded waveforms must be transformed to simulate equivalent line
source generated data prior to application of 2D FWI.

Different approaches are known from literature. They are primarily devel-
oped for reflected waves and are not appropriate for shallow seismic data.
They fail on 2D heterogeneous structures or provide inappropriate ampli-
tude scaling. We present a simple and effective procedure to transform
shallow seismic data.

‘ 2. Definition of the line source I
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A line source can be understood as a continuous arrangement of superim-
posed point sources.

The wave’s energy spreads on the surface of a sphere (amplitude decay
« 1/r) or a cylinder (amplitude decay « 1/./r) if radiated from a point
source or a line source, respectively.

While the transient point source produces a transient displacement at the
receiver in 3D full-space, this is not the case for the line source. The dis-
placement time history produced by the line source has a sharp onset and
decays slowly to zero as point sources of larger offset along y contribute
to the signal at larger travel time.

The displacement vector field is given by

u(x,t)://// G(x EX, ) £(x, ) Px dt, (1)

where G(x, t;x/,t') is Green’s tensor and f(x, t) defines the seismic source.
The force density for a point source at xs is

fp(x,t;xs) = F(t) 6x(x — x5) 6x(y —ys) 0x(z —zs) and  (2)
fL(x,y,z,txs,2z5) = F(t) Cx(x — xs) 0x(z — 25) (3)

for a line source with Dirac’s delta function 6,(x) of [6,(x)] = 1m™1, [F] =
1N, and C = 1m~!. For a 2D structure G(x,t;x/,t') is constant in y and
hence the equivalent displacement field of a line source
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u (x,y,z,txs,2s) = /up(x,y,z, t;xs,y',zs)C dy. (4)
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can be obtained from the displacement field generated by a point source
by integration along v.

‘ 4. Solution of the acoustic wave equation |

3D Green’s function in full-space (point source):

3D (y- xa k) — 030(R: Kk _eikR
G (x5, k) = g (R;K) =

R = |x — xg| is the source to receiver offset.

2D Green’s function in full-space (line source):
G2P(x; xs, k) = ¢2°(R; k) = iC w H\" (kR) (10)
Far-field approximation of 2D solution (line source):
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Far-field simulation of line source displacement:

li_>m i (x =r,w) = Fp(r, k) tip(r,w) (12)

Factor derived from acoustic wave Green’s function:
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Fo(r, k) = lim — | ein/ac (13)
o g20(r) k

Fp(r, k) can also be motivated by (a) ¢1°(r)/¢2°(r), (b) expansion kernels

in eqgs. (5) to (8), and (c) S-wave excited by hammer blow.

‘ 5. Single-trace transformation procedures |

Single velocity transformation for phase velocity vpn = w/k:

Famp = ~\~ =~

F /= (w) is the Fourier transform of

vt (15)
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transformation:
(vpon Known a priori and travel distance r = t vy, from sample time ¢)

Famp — Uph\/j (16)

Direct wave (shallow seismics) transformation:
(travel distance equals offset » and vy, = r/t from sample time ¢)

2
Famp:r\/;:r\lef\/t_—l(t) (17)

‘ 3. Fourier-Bessel transformation I

The Fourier-Bessel expansion coefficients C, and C, can be obtained from
point source data recorded on 1D structures by inversion of
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ip(r, 2) = | Colk,w;s) Jo(kr) k d anc (5)
o
pe(r,t;2s) = /Cr(k/w;zs)h(kr)kdk- (6)
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The Fourier-Bessel transformation of the vertical and horizontal compo-
nent of displacement then is obtained by
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i, (x,w;zg) = / C.(k,w;zs) 2 cos(kx)C dk and (7)
0
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i (x, £ 28) = / C,(k, w; z5) 2 sin(kx) C dk. (8)
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for the equivalent line source. While this approach is mathematically ex-
act for 1D structures it suffers from cut-off effects when being applied to
recorded data and fails for waves recorded on structures with significant
2D heterogeneity.

‘ 6. Homogeneous full-space |
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For reference we compare exact and simulated line source seismograms
in homogeneous full-space where all approaches should provide iden-
tical far-field simulations. Reflectivity seismograms for point- and line-
source are calculated in 3D full-space with vs = 1kms™!, vp = 1.7kms~!,
0=1.8-10°kgm—3, and Qp = Qs = 100.

‘ 7. Layered half-space I
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1D testcase Bietigheim; radial component
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Reflectivity seismograms for a
strongly dispersive subsurface
model obtained by inversion of
shallow seismic field data.
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Simulated line source seismograms are obtained by transformation pro-
cedures from point source seismograms. Line source reference seis-
mograms are obtained by the reflectivity method. Waveforms are dis-
played with true amplitudes scaled by an offset dependent factor. Only
the Fourier-Bessel and the direct wave transformation are able to produce
correct amplitudes for waves of any propagation velocity.

2D cases are presented by Schafer et al. (S1-6-002).

‘ 8. Conclusions I

Equivalent line source data can be simulated from shallow seismic point
source recordings by a simple but effective prodecure:

1. scale waveform by rv/2 (offset times square root of 2)
2. convolve with 1/+/t (fractional half integration)
3. taper samples with 1/+/t

An implementation of the concepts discussed here is available in the pro-
gram lisousi which is provided at http://www.opentoast .de.
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